
5^.

00

4

$

~,

i

THE UNIVERSITY OF MICHIGAN

Technical Report 19

CONCOMP

November 1968

NETWORK MODELS FOR THE CONVERSATIONAL

DESIGN OF STOCHASTIC SERVICE SYSTEMS

V. L. Wallace and K. B. Irani

DOC

lliisasr

- v »»A*^ *'"•. He
C ' i A

-'-iii^C.^

tf
J

BEST
AVAILABLE COPY

MISSING PAGE

NUMBERS ARE BLANK

AND WERE NOT

FILMED

UNIVERSITY Ü F MICHIGAN

Technical Report 13

Network Models for the Conversational

Design of Stochastic Service Systems

Victor L. Wallace
Keki B. Irani

CONCOMP: Research in Conversational Use of Computers
F. H. Uestervelt, Project Director

URA Project 0 7449

supported by:

ADVANCED RESEARCH PROJECTS AGENCY
DEPARTMENT OF DEFENSE

WASHINGTON, D.C

CONTRACT NO. DA-49-083 OSA-3 05 0
ARPA ORDER NO 716

administered through:

OFFICE OF RESE. RCH ADMINISTRATION ANN ARBOR

November 1968

ABSTRACT

Numerical analysis of Markovian queueing networks,

and graphical communication of problem statements and

results, offer a potential for truly conversational

use of computers for "high-traf fi"." design of large-

scale systems. However, one must develop a translator which

converts the pictorial language of queueing network

diagrams to the data structures required for efficient

numerical analysis. This requires the development of new

mathematical models for networks, and for the meaning

of their components. Such mathematical models are

explored, and their role in the development of adequate

programming systems is described.

These models, algebraic in form, provide a vehicle

for the information conveyed directly by the diagram,

the information implicit in the symbology of the diagram,

the information upon which the actual calculations are

performed, and the procedure which transforms the infor-

mation from the form of the diagram to the form for

calculation.

111

TABLE OF CONTENTS
Page

ABSTRACT iii

LIST OF FIGURES vii

1. INTRODUCTION 1

2. THE TRANSLATION PROCESS 5

3. ELECTRIC NETWORKS: A PARTIAL ANALOGY 14

4. DESCRIPTION OF QUEUEING NETWORK DIAGRAMS 24

5. A MODEL FOR THE MATRIX STRUCTURE 27

6. A NETWORK TECHNOLOGY 33

7. EQUIVALENCE AND CONSOLIDATION 41

8. A MODEL FOR THE SYMBOL SEMANTICS. 44

9. CONCLUSIONS 51

REFERENCES 53

■

LIST OF FIGURES

Figures Page

2.1 A Simple Network Di agram 5

2-2 A Less Trivial Network Diagram 6

2.3 Functional Diagram of a Graphic Conversa-
tion-.l Programming System for Networks 8

3.1 An Electric Network 14

3.2 Defining Branch Voltage and Current 19

3.3 An Equivalent Network to Figure 3.1 21

7.1 Some Nonprimitive Elements 42

7.2 An Equivalent Network 42

vi i

NETWORK MODELS FOR THE CONVERSATIONAL
DESIGN OF STOCHASTIC SERVICE SYSTEMS

V. L. Wallace
K. B. Irani

1. INTRODUCTION

It is frequently desirable to design stochastic ser-

vice systems which cannot be adequately analyzed by nor-

mal queueing theoretic models. Such systems consist, in

the most usual instances, of numerous waiting lines (or

"queues"), servers, and controlling or directing stations

which determine the discipline of task flow through the

system. These systems are often realistic representations,

for high-traffic design purposes, of behavior in diverse

fields such as plant management, telephone switching, air

traffic control, electronic warfare, logistics, and com-

puter system specification and control.

Improved techniques for the design of such systems

are greatly needed. For example, a design problem of this

type which has not yet been adequately resolved is at the

heart0of a current crisis in the development of execu-

tive systems for demand-paged, multiprogrammed, timeshared

computer systems. Problems of this type are also found

frequently in the course of selecting the equipment and

executive control strategies which permit a modern large-

scale computer system to serve a specific environment.

-1-

These problems have, in the past, required painstaking

study and could not be answered generally enough to be

treated routinely. Increasingly, as the "computer

utility" concept gains acceptance, these "queueing"

problems will assume a more and more dominant position as

the source of computer system inefficiency.

Similar needs for improved techniques . e found

everywhere that ^"^-traffic prob1^-- occur. This is

the natural result of the trend of every technology

toward ever larger and more complex systems, with ever

greater levels of traffic. New techniques should permit

a more routine design of individual systems and stra-

tegies for specific environments.

One of the major hopes for significant improvement

of design capabilities using queueing models lies in the

so-called "conversational" computer techniques, whereby

the calculating power of a computer can be closely coupled

to the creative power of a design engineer. If a de-

signer can freely pose alternative models to a computer

and get immediate evaluation of various performance

criteria, he may then generate enough insight (via cut-

and-try procedures) to guess a near-optimal design for a

system far too large or tightly iiterrelated to be treated

by conventional optimization techniques.

However, the use of conversational techniques for the

analysis and design of stochastic service systems requires

development of a problem-oriented programming system

which is specifically tailored to the demands of conver-

sation. The input language must be terse, the calcula-

tions must be fast and reproducible, the variety of models

available must be broad, and the results should be in a

graphic, insight-provoking form.

The most promising approach to developing such a

system is to use graphic displays for the man-computer

comminication, and to use recursive numerical methods [8]

applied to Markovian models for the analysis. Graphical

input to the computer in the form of queueing network diagrams

provides an ideally compact medium for description of

problems, while an output in the form of graphs provides

a suitably insight-provoking form for results.

The recursive techniques provide fast calculations

with excellent accuracy (hence reproducibi1ity) of the

calculated results [9]. They also can be applied to a

wide variety of models. This variety of models is

considerably broader than is feasible with closed form

analysis, but not as general as the slower, less accurate

simulation methods. The detail available in numerically

solvable models is also midway between that available using

closed form analysis and simulation methods.

-4-

There are three basic operations involved in a pro-

gramming system to serve these goals. They are:

1) the servicing of the graphic operations,

2) the translation of the diagram to the form

required for (Markov chain) input to the

solution system,

3) the solution of the Markov chain.

The second of these is a process which, to our knowledge,

has not been previously attempted, and has no obvious

solution.

The subject of this paper is the exploration of

mathematical models for Markovian queueing ne works

which can make this translation conceptually possible.

(The models presented herein have been employed [3]

in the development of specifications for such a

translator, and an implementation of these specifications

is currently in progress.)

In the next section we will take a closer look at the

prograifming system as a whole in order to detail the role

of the translator and its parts. Then, through the partial

analogy of the better understood electric network models.

Section 3 will attempt to provide a perspective for the

queueing network models to be developed. The subsequent

sections will develop various aspects of the models.

2. THE TRANSLATION PROCESS

Formal representations of Markovian queueing models

in network diagram form are actually expressions in a

graphical language. For example, the simple diagram of

Figure 2.1 is a means of conveying a precise meaning

-*(N

Figure 2.1

A Simple Network Diagram

(in the form of a Markov chain) through pictorial symbols

and syntax. The small circle indicates a Poisson arrival

source with mean intensity X, the large circle indicates

a queue with a maximum length of N, the rectangle indicates

a server with mean service time —. and the triangle indicates

an exit from the system. The lines indicate task flow

according to rules established for each of the symbols

j oined.

The language of network diagrams is potentially a

very rich tie. It can contain symbols representing a

considerable variety of sequencing rules, statistical

properties, and selection processes. A further example,

Figur« 2.2, shows a network containing a random branch

point, an overflow switch, and a merge point, in

addition to the arrival source, queue, server, and exit.

-5-

mmm

The language, at present, must be confined to one

expressing systems which define finite Markov chains

wi stationary transition probabilities, due to the

\».
■\

2 J.

-> ^

Figure 2 . 2

A Less Trivial Network Diagram

nature of the recursive numerical techniques to be used

for solution. Convenience dictates further that the

systems define continuous-time Markov chains. Specifi-

cations of the desired results are also limited to those

results which can be obtained by some operation upon the

equilibrium state probabilities. None of these restric-

tions are oppressive however, as much can be done

within them [9] .

To put the model requirements in clearer perspective,

it is helpful to view the structure of the entire programming

system in a little more detail. A schematic diagram

-7-

of such a system, as envisioned in this paper, is*own

in Figure 2.3. (The diagram shows the various processors

as oval symbols, and the information structures as rectangles.)

The first thing to be noted is that, in a real graphics

system involving cathode-ray displays, the inpu^ to the

system is not actually a network diagram. Rather, it is

a sequence of commands derived from the interpretation of

light-pen or tablet stylus actions, and keyboard actions.

These commands direct the construction of a diagram on the

display screen and inform the programming system of the

nature of the diagram and its desired output. The commands

and the diagram are equivalent expressions in two graphic

languages, often called a control language and a display

language, respectively [7]. The control language is the

actual form of the input to the translator.

A second observation about the system shown in Figure

2.3 is that the process of translating (indicated in the

figure by the dotted rectangle) input commands from the

control language to the form needed for analysis (the

mat rlx structure) is divided into two stages, a command

translator and a network t ranslator. The intermediate

form, which is a result of the command translator, is

designated the network description structure.

.

mm

-8-

Cont rol
Commands

T*le

Network
Di agram
(Display)

Output
iraphical Tables
(Display)

TRANSLATOR

< Command \ ;
Translator/

Network
Descript ior

Output
Specif icaticn

-Q
Output
Format ter

Ne
Tra

twork A
ans 1atogy

Matrix
St ructure

r——>v ^Vnalyzer I

So 1ut ion
St ructure

Figure 2.3

Functional Diagram of R Graphic, Conversational

Programming System for Networks

:

The network description structure is the result of

parsing the input expression and storing it in a form which

can be more readily treated by a translator. Mnemonics

and graphics which are irrelevant to the meaning of the

input expression (where "meaning" here is the information

needed to form the matrix structure representation)

have been removed, and the result put in good systematic

form. The practice of providing such an intermediate

structure is well-established in programming-language

translators because of simplifications it makes possible.

In procedure-oriented compilers like MAD, ALGOL, or

FORTRAN, the transformation to an intermediate structure

is the first-pass operation which for algebraic state-

ments often results in a list of triples, perhaps using

Polish prefix form. (The form of this structure for

queueing networks will be discussed in Sec. 4.)

Because of the potential richness of the network

diagram language, and the interest in ease and flexibility

of use, it is very desirable to encourage users to

develop and use a shorthand notation. This is assumed to

be accomplished by making the translators table-driven,

and providing a facility for the user to define his own

symbols and their meaning through special commands. The

language treated is then an open-ended one, and the

complex symbol graphics which would be r'^ded to differen-

.•

10-

tiate among symbols of a large vocabulary can be avoided.

Also, since few symbols are used in any single group of

problems, some unnecessary memory requirements (both in

the computer and in the user's brainj for seldom-used

symbols are avoided.

The command translator associates with each symbol

used in the commands a meaning supplied by the table. This

meaning is both pictorial and symbolic, the pictorial

meaning being used in the formation of the network dia-

gram displayed, and the symbolic meaning being used in the

formation of the network description structure. Some of

the commands describe the solution desired and the form

of its display. The command translator must also parse

these and place them in a structure called the ouput

specification structure. (The specifications so-described

indicate, for example, which random variables of the

queueing networks are to be examined, whether an expec-

tation or a distribution function is to be displayed, and

whether the result is to be displayed as a graph or a

table.)

The network translator associates with each symbol

used in the network description structure a meaning supplied

by the associated table. This meaning is technical. For

example, if a symbol is known to represent a "server,"

the network translator must replace the "server" symbol

by technical information which tells us all we need to know

11-

about how the "server-ness" of the component affects the

qualities of the matrix structure. The network translator

then can alter the form of this information to produce

the matrix structure. The tables can be readily changed

as the user's vocabulary changes.

The remainder of the system in Figure 2.3 is more or

less self-explanatory. The analyzer operates upon the

Markovian model described by the matrix structure and

determines a vector of equilibrium state probabilities,

which is the "solution structure" of the figure. These

results are then processed according to the output

specifications to provide the desired output of graphs

and tables via the "output display file."

From this survey of the parts of the programming

system, we have seen that the heart of the translator

is a table-driven processor (the "network translator")

which takes a parsed description (the "network description")

of the symbolic network diagram, associates meaning with

its symbols, and prepares an output (the "matrix stricture")

which is descriptive of a Markov chain in an easily

solved form.

To develop a translator program, however, a mathe-

matical model is needed which unequivocally answers the

four basic questions;

■

.

:

- 12-

(A) What is the useful information directly conveyed

by the diagram (as abstracted for the "network des-

cription'^ ?

(B) What is the information which must be presented

to the analysis program (represented in the "matrix

structure")?

(C) What is the algebraic procedure corresponding to

the transformation from network diagram to

"matrix structure?"

(D) What is the useful information indirectly

conveyed by the symbols of the diagram (as

represented in the "table" of the "network

translator")?

These questions are not unusual in the context of

programming languages. The tirst calls for syntactic

description of the input language, the second calls

for syntactic definition of the output language, the

third calls for specification of the translation

procedure, and the last calls for semantic definition

of symbolic operators (like macro-definitions).

However, models by which they can be answered for

queueing networks have not oeen previously available.

The model will be algebraic in nature so that the

translation procedure can be completely described in

algebraic terms. Thus, it represents a new symbolic

-13-

framework in which queueing networks can be discussed with

precision. Because of the novelty of the model, however,

it is helpful in this report to precede its description

by an analogous description of a model for electric net-

works, which are well understood. The functional diagram

of Figure 2.3 is equally appropriate as a description of

a system for analysis and design of electric networks,

and therefore such a description will provide a good

conceptual framework for all the work that follows.

3. ELECTRIC NETWORKS: A PARTIAL ANALOGY

It will be supposed, for simplicity, that the

electric networks to bemodeled are linear, finite, passive,

bilateral, and initially quiescent; that the solution

required is a transient analysis of the voltage at

particular nodes; and that sources will be solely

current sources in the form of step functions. The

network diagrams would be like that of Figure 3.1. These

would somehow be translated into matrices which define

sets of "node equations" for the networks.

• 1

-G2
vv.

i (' Gr ^"C
• • «

L3 C3 V

Figure 3.1

An Electric Network

An electric network diagram such as the one in

Figure 3.1 consists of a collection of branches representing

generic things like "resistors," "capacitors," and "current

14-

15-

sources." Eacli branch has two identifiable terminals,

and the terminals of all the branches are joined in groups

to form "nodes." In addition, each branch lias a parameter

(e.g., G., L , C , L., L_, etc.) adjoined to it which

modifies its generic description in some as yet undes-

cribed manner.

We know, from classical electric network theory,

that the meaning of this network diagram is ultimately

a mathematical relationship between independent current

source values and electrical potentials imagined to be

present in the network. Making the usual assumption that

the potentials are measured relative to the datum (bottom)

node, there is one unknown potential (a function of time)

for each nondatum node. If we represent these potentials

by a vector V of their Laplace transforms, then the

relationship can be expressed by the matrix equation

YV (3.1)

where Visa matrix of t rans form admi ttances , and I

is a vector of (Laplace) t ransformed node-driving current s

These latter two objects are uniquely determined from the

information available in the diagram, and would represent

the information stored in the matrix structure defined in

■:

-16

Figure 2.3. When they are known, the solution V can

be obtained by well-known numerical methods.

Our purpose in this section is to show how Y

and I can be routinely found from the network diagram,

so that insight can be gained into the more complex

procedure needed for queueing networks.

The first step is to transliterate the network

diagram into a neater abstraction of its explicit content

Let a network N be defined simply by a collection L

of branches and a collection K of nodes, so that

N = <L,K>
e

L = U. : je Jj}

K = {k. :je J2},

(3.2)

(3.3)

(3.4)

where J and J? are index sets. Furthermore, let.

a branch £., je J. , be defined by the three things which

identify it uniquely: a generic "type value" X. (which

may take on values of "resistor," "capacitor," "inductor,"

and "current source"), a real parameter value a.

(providing the value of resistance, capacitance, inductance,

or current, as appropriate), and an ordered pair T.

of "terminals" (directivity is important to sources, and

useful for the other branch types). Thus

I. = <A., a . , T.> je J.
J 3 J J . 1

(3.5)

A node k , je J , is merely a set of terminals such that
J 2

17-

each terminal is contained by exactly one of the nodes in

K . In other words, the k. are defined so that

u
j e J.

k. = T
J

(5.6)

and

k H k e 0, all j ,j e J (3.7)

where </> is the empty set, and T is the set of all

terminals in all the T., je J..
J 1

Thus, in this notation, an arbitrary network has been

defined in terms of two primitive classes of objects:

terminals, and generic types of branches. The first

is merely a vehicle for topological (graph) information

about the diagram. The second represents the generic

identification of the graphics used for the branches

in the diagram, and has the four possible values:

"resistor," "inductor," "capacitor," and "current source,"

corresponding to the four graphics available to the drawer

of the diagram. The model described by Eqs. (3.2) through

(3,7) is an algebraic representation of the network descrip-

t ion structure of Figure 2.3.

The second step is to extend this model of a network

by replacing the branch-type designation by a model of its

distinctive meaning. This meaning was implicit in the

diagram, in the snse that the user left it understood in

the notation of the diagram. The extension of the model

■■■HRHMWMi

18

will make it explicit, and by so doing will allow us to

use it in forming Y and I . if the model is general

enough, it will also permit the introduction of new branch-

type constants for the desirable kind of language

flexibility proposed in the introduction.

A model to fit the purpose is readily found from

electric network theory. The type designation

of a branch t. can be replaced by a pair of quantities—

the so-called short circuit current of the branch, and its

Norton admittance—and satisfactorily fulfill the re-

quirements. If we let i. represent the Laplace

trinsform of the former, and let y. represent the latter,

then the definition of the network N is extended by the
e

equation

\j * <i.,y.>, je J1 (3.8)

The two quantities are found for a given branch, when the

type designator and parameter value are known, by inspec-

tion of Table 3.1. Recall that current sources were

defined, for this system, to be strictly step functions,

and the parameters of branches of current - source type were

defined to be real constants, the amplitude of the step.

Thus the transform of the short-circuit current of a

source with parameter I, is 1,/s. The entries in the

table represent the coefficients of a linear equation

relating an assumed transformed branch current 1. to a
J

Type of Designator A.

"Res i stor"

"Inductor"

"Capaci tor"

"Current Source"

Table 3.1

Defining Branch Types

Parameter Value a

G

L

J ■}

Ü G

0 1
sL

0 sC

I
0

transformed branch voltage V. , in such a way that

I . = i. + y. V.
J J J J

(3.9)

Figure 3.2 defines this assumed pair of variables for abranch

il
V.

T-
Figure 3.2

Defining Branch Voltage and Current

19-

20-

having terminal pair T. = <t, .t>. Table 3.1 plays the

role of the table of the network translator in the program

ming system of Figure 2.3

Indeed, it is well known (by Norton's theorem) that

any two-terminal fragment of the networks being treated

here can be represented by a pair like that shown in

Eq. 3.8. Thus, to define new fundamental symbols to

represent any such two-terminal network fragment, one

need only append additional lines to Table 3.1 If, in

addition, vector value parameters (a.) are permitted,

a model has been introduced which has considerable power

to accept shorthand notation in the network diagrams.

For example, if an appropriate new symbol were defined for

tiie G-L-C parallel circuit. Figure 3.1 might have been

drawn equivalently as Figure 3.3. The newly defined

branches have a vector parameter giving conductance,

inductance, and capacitance. Other ways to use the

parameters, of course, also exist.

The third, and final, step in the process is to derive

the matiix Y and the vector I from the network model

described by Eqs. (3.2) - (3.8). For electric networks,

this also is a simple operation, derived directly from

Ki rchoff's laws.

-21-

VV'v-

I n
,-i-,

09 \J_;<G.L.C.> <G3'L3'C3>

Figure 3. 3

An Kquivalent Network to Figure 3.1

Basic to the procedure is the calculation of a matrix

A known as the branch-node incidence matrix. It can

be routinely constructed from an inspection of the terminal

pairs T., je J. , and the terminal sets k., je J. , called

nodes. (The exact procedure is not important here.)

Then, if we write the symbol i for a vector of the short

circuit currents i. for all branches, the node current
J

vector I is simply

T
I - A i. (3.10)

where A is the transpose of the matrix A . Furthermore,

if we construct a diagonal matrix y whose diagonal ele-

ments are the Norton admittances y. for each branch,

then the matrix Y is simply

-22

Y = A yA. (3.11)

This completes the description of the process of translating

from diagram to matrix structure.

The four questions of Section 2 have been

answered. Equations (3.2) through (3.7) represent the syn-

tax of the network diagram, answering question A. The

matrix Y and the vector I of Eq. (3.1) represent

the object of translation, answering question B. The

translation procedure is the described procedure for the

creation of the matrix A , the calculation of I (via

Eq. (3.10)), and the calculation of Y (via Eq. (3.11)),

and is the ans., er to question C. Lastly, equation (3.8)

and Table (3.1) represent the semantics of the elements,

answering question D.

It is interesting to note that the discussion proceeded

at at least three different levels of abstraction. First

there was the network diagram, in which technological

characteristics were understood but not in evidence. That

is, things like voltages, currents, admittances, etc. were

entirely suppressed. Second, there was the level of the

models, in which al] meaning was expressed in algebraic

and functional terms. The operations were performed by

-23-

observing set memberships or by multiplying matrices and

vectors. Third, there was the level of the technology

represented by the models. At this level, the funda-

mental operations of the lower level are validated and

explained in terms of physical laws (Ohm's law, Kirchoff's

laws) and in terms of theorems about them (Norton's

theorem, Superposition, etc.). These three levels will

also be found in the development of the queueing network

models.

•

4. DESCRIPTION OF QUEUEING NETWORK DIAGRAMS

In this section, the "syntax" of queueing network

diagrams will be described as a means of answering the

first of the four basic questions, "What is the information

directly conveyed by the diagram?" The treatment will

be analogous to that of electric networks (Sec. 3).

We postulate, from observation of queueing network

diagrams like those of Figures 1.1 and 1.2, that a queue-

ing network consists of a set of distinct objects which

will be called elements , and a set of connections among

them. The elements represent generic things like "queues,"

"servers," "sources," etc. They usually have parameters

associated with them. The connect ions join distinct,

identifiable parts of the element, which will be called ports

Only one connection can be made to a port.

There is some minor controversy over whether things

like the random branch and the priority branch, as used

in Figure 2.2, are rightly considered elements or connec-

tions. Philosophically, one can go either way. If

they are elements, then connections are merely associ-

ations of pairs of ports. If they are connections, then

every connection must be regarded as an instance of one of

several types of connections (simple, random branch,

priority branch,., etc.) , and it is sometimes necessary to

associate parameters with them (viz., the branch

-24-

25-

probabilities on the random branch). In this report,

we have chosen the latter formulation (multiple connection

types) because it results in simpler models of the ele-

ments when great generality of admissable element-

types is not required. It is, thus, a useful compromise

for a first attempt at implementation.

The essential information in the above description

of the retwork diagram may be succinctly summarized by

saying that a network N consists of a set E of

elements and a set C of connections, and that an

element e. or a connection c. consists of a type
i i / r

identifier T. ,a parameter set p. , and a port set

P. . Thus
i

N = <E, C>

E = {e^ie I ^

C = {c.:ie I2}

e. = <!., p., P.>, all i e I x i' Ki i ' i

c. = <T., p., P.>, all i e I.
i i' Ki i ' 2

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

where I. and !_ are disjoint index sets. Every port

in the network belongs to exactly one element port set

P., ie I., and exactly one connection port set P., ie I ,

The number of prts in a port set P. is a function of

the type and, in general, parameter values of the correspon-

ding element or connection.

-26-

Equations (4.1) through (4.5) have an analogous

purpose to that of Eqs. (3.2) through (3.7). They

represent a mathematical model of queueing network

diagrams. The element-types, connect ion-types, and

ports are the primitive classes of objects in terms of

which a class of things called queueing networks can

be defined. This definition is a very general one,

capable of allowing an enormous variety of networks to

be represented. However, in particular instances of

application it may be restricted, just as electric

networks are often restricted to subclasses like "planar

networks," "ladder networks," or the like. Furthermore,

by restricting the allowed symbol types, the language

can be further limited in specific applications, as in

the case of "linear" electric networks, or "passive"

electric networks.

5. A MODEL FOR THE MATRIX STRUCTURE

In this section we will concern ourselves with the

second question describing models for the information

represented in the "matrix structure," the output form

of the translator.

The matrix structure must describe a finite state,

cont inuous -1 ime Markov chain (^ : t>J3} with stationary

transition probabilities, in a form suitable for efficient

numerical calculation of the equilibrium probabilities and

efficient identification of the states to which the

probabilities correspond. Traditionally, a Markov chain

of the nbove type is described by a matrix Q = (q),
r, s

r,seS , of transition intensities, where S is the set of

states, and

'rs
= IT Prtxt s X 0

q > 0, Mrs— '

I
seS ^rs

r]|t=0+ , all r,se S, (5.1)

all r,se S; r ^ s (5.2)

0. al1 reS (5.3)

(An alternative interpretation of q is that its r Mrs

reciprocal represents the conditional expectation of the

time interval during which a sample X (w) of the process

remains in state r , given that it will jump from

the state r to the state s at the end of the interval.

It is also well known that, for these processes, all

such intervals are exponentially distributed random

-27-

28-

variables, independent conditionally upon the state r

and s .)

The equilibrium probabilities TT for each state r

in S , are determined by a solution to the equations

Z TT q =0, for seS,
reS ^ Hrs '

and

Z TT = 1
reS r

(5.4)

(5.5)

Thus, for our purposes, the information which must be

provided as output from the translator (and hence input

to the analyzer) must describe the state set S and the

matrix Q .

The matrix Q is related to the network diagram in

a complicated way, so that it is necessary to use an

equivalent form which has an easy "physical" inter-

pretation in terms of the network components, and yet

can still be used like the matrix Q in numerical

solution of Eq. 5.4. This equivalent form is developed

by modeling the notion of "events" of the network.

For example, consider the network of Figure 2.1.

In that example the states can be regarded as two-dimen-

sional vectors <x ,x2> , the first coordinate (x)

being the number of tasks in the queue, and the second

(x^) being the number of tasks in service (0 or 1) .

The state set is S = {<0,0>,<0,1>,<1 , 1> , .. . , <N,1>} .

29-

There are two "events" which occur: "task arrivals"

and "task completions." If we can model these alge-

braically, and show that the r-.odel is equivalent to a

description of Q , then we have a way of conceptually

relating the diagram to the matrix. (In general, the

events will be associated with specific network components

in speci fie ways ."!

One such model is to consider the "events" of a

network as a set of triples whose first component

describes the set of states at which the event can occur,

whose second component describes the resulting state as a

function of prior state, and whose third component des-

cribes the probability intensity of occurrence of the

event. Proceeding with our example, the states for which

an "arrival" can occur are all those for which the queue is

not full, and it results in an increment of x, by one,

except when the server is empty (x» = 0) when it

increases x2 by one. This event occurs with probability

intensity X , so that the event could be written

^1 = <b
1'
h
1'V

|
1
> (5.6)

where

b1 = S-{<N,1>} = {<0,0>,<0,1>,<1,1>,. . . ,<(N-1),!>} ,

h 1 (x 1 , x 2) =

3Ü-

:0 , 1>, when <\ ,x1> = <0,0>

<x + 1 , x , > , elsewhere in b ,

and

ul - X

Similarly, the "completion" event can occur only when

x- >ü, it results in a decrease of queue length x.

whenever x. > Ü or in emptying the serverif x = 0 ,

and it occurs with probability intensity u .

Thus, the event can be written

C2 = <b2.h2.y2> (5.7)

where

b2 = S-{0,0>}= {<0,1>,<1 , 1>, . . . ,<N,1>}

and

h2(x1,x2)

y2 = u

<0,0>, when<x,x2> = <0,1>

<x.-l,x_>, elsewhere in b-,

In this example, then, the set of events is

5 - Uj,^} . (5.8)

Following this approach in general, let E , the set

of events of a network, be an indexed set

5 = Uk: k« Kj}, (5.9)

-31

where, for all k e K, £ is a triple

^k = ^k^k'^k"'
5. 10)

and where b is a subset cf S, 1^ is a function

on b, to S , and u■ is a positive constant.

This model of network activity is readily shown

to be equivalent to the matrix Q . Observe that each

event E, describes a set of transitions having a

p.irticular intensity, and thus can be viewed as pre-

cisely describing an elementary transition matrix Q,

having a very special form. The set b, identifies

the rows of Q. which have nonzero entries, the function

h, defines the column h.(r) in which a single nonzero

off-diagonal entry of the rth röw (r e bk) appears, and

the constant u, defines the value of that element as well
k

as the negative of the diagonal entry of the rth row

(row sums must be zero). The matrix Q can be con-

structed from E by summing

Q = Z Q
keK,

(5.11)

Furthermore, since any matrix Q can be written as a

finite sum of such matrices Q. , one can always construct

a (non-unique) set 5 from any Q . (Of course, the

events so constructed will not always have a useful

-32

physical interpretation unless the component Qi, 's

are chosen well.) This shows the equivalence between

E and Q .

The even-, set 5 is the intermediate form which is

the object of network translation and the subject of

numerical analysis. The matrix structure is a computer

representation of this set.

A NETWORK TECHNOLOGY

At this point the fourth question, "What is the

useful informatien indirectly conveyed by the symbols

of the diagram?" will be discussed in general terms.

The physical connection between element and network,

between the whole and its parts, will be explored. A

more detailed model, under specific limitations of

application, will be deferred to Section 8.

In the previous section, we have seen that a network

can be described by a state set and an event set. Our

intuition tells us that individual elements of the network

ought also to have things like states and events, or

how else could we refer to the "length" of a queue, or the

"occurrence of an arrival" in a source element with such

disdain for the identification of their neighbors? In

this section a generalized interpretation of elements and

connections in such intuitive terms will be explored, so

i!4 that algebraic definitions for element-types and connection-

types can bear a realistic interpretation. The algebraic

'

-33-

m

54

definitions, which will be developed in Section 8, will

be more specific and limited than these interpretations,

just as the <I.,Y.> definition for electric branch
J J

types applies to much more restricted electric net-

works than a discussion of Kirchoff's laws would require.

To be concrete, let us first describe what we consider

a "server" to be. It is an object which can be in one of

three possible states: "idle," "busy," or "completed."

This state can change in three possible ways! (1) If

the server is in the "busy" condition, a "service comple-

tion" may occur. (2) If the server is in the "idle"

condition, an "input" may occur at its input port.

(3) If the server is in the "completed" state, an

"output" may occur. The first of these is regarded to

occur at random times which are determined within the

server itself, without regard to occurrences elsewhere

in the network containing the server. The second and

third occur at times determined by the element or ele-

ments connected to the server at the input and output

ports, respectively. (These latter elements will be

called the associates of the server at the respective

ports.) Thus the occurrences which produce changes are

more fundamentally of only two types: those which are

seif-generated (or autogenous) and those which are

externally generated (or exogenous).

-35-

The change in state resulting from a "service

completion" depends upon the condition of its input

and output associate. If the input associate "can

supply an output," and the output associate "can accept

an input," then the service completion will immediately

cause both an input to its output associate and an output

from its input associate to occur, but will remain in

the "busy" state. In other words, it has produced

exogenous occurrences for both associates, but its own

state hasn't changed. On the other hand, if the output

associate could not "accept an input," the server would

change to the "completed" state, waiting until the output

associate requests an output (i.e., produces an exogenous

occurrence at the output port). If the input associate

cannot "supply an output" but the output associate can

"accept an input," then the server will change to the

"idle" state, and cause an input to the output associate

to occur.

An "input" occurrence or an "output" occurrence

resulting from an external cause (i.e., exogenous

occurrence) produces changes in state which are similarly

dependent upon properties of the associates. An "input"

will produce a change from "idle" state to "busy." An

output when the input associate "can supply an output"

results in change from "completed" to "busy"; otherwise

the change is from "completed" to "idle."

36

The above description is a slightly abstracted ver-

sion of our normal concept of the properties of a server.

Other interpretations in terms of task flow, or similar

notions, will be equivalent and perhaps more easily

followed. From this illustration it should be easier

to abstract further the principles which will be common

to all elements.

First, elements relate to one another only through

variables identified with their ports. These variables

must have an interpretation which is the same for every

element, so that any element may be used as an associate

of another without alteration of the definition of either.

These variables will be referred to as endoconditions

at the respective ports. They represent all of the

information about ar. element which is needed to describe

its associate. If the associate is a server, the in-

formation needed must tell us, at least, whether or not

the element is able to "accept an input" or "supply an

output" (depending on whether the port in question is in-

put or output). Depending upon how broad the class of

networks to be represented, the endocondition may be

interpreted in different ways. If multiple task transfers

between elements are possible (as when a bulk server can

be represented), the endocondition might describe "the

number of tasks which can be accepted (supplied) at an

input (output) port." Where networks are restricted

by limitations on allowed vocabulary or syntax to one-

37-

task-at-a-time trans fers, then a simple two-valued

endocondition suffices.

Second, each element must have a set of states

which adequately describes its behavior. In the server,

this set has three members. In the queue it has as many

members as there are allowed lengths of the queue.

The state set of the network is contained in the Cartesian

product of each element state set. The element state is

a projection of the network state. The endocondition is a

function of the state of the element, and sometimes must

be a function of the endoconditions of the associates as

well.

Third, each element has a set (perhaps empty) of

objects which will be called autogenous events. These

are descriptions of the autogenous occurrences and the

state changes that result from them. The state change is

generally a function of the state of the dement and of the

endoconditions of the associates at all the ports.

(Although there is only one autogenous event in the

server, there are elements which have more than one, hence

our reference to a set of them. A queue has nc auto-

genous events.) Typical autogenous events represent

service completions in a server, and arrivals in a source

element .

-38-

Finally, each element will have exogenous events

associated with its ports. These describe the exogenous

occurrences and the state changes that result from them.

As in the case of autogenous events, the state changes are

functions (perhaps random) of both the state and the endo-

conditions of the associates at the other ports. Typical

exogenous events represent the act of inputting a "task"

or a "customer" at an input port or of outputting one at an

output port. (Notice that logically both of these acts

appear to be instances of a single type of object, an

exogenous occurrence, and that only the words we use in

the interpretation are different.)

In some classes of networks, these two exogenous

occurrences are the only ones which can occur. In other

classes, such as those including bulk service elements,

one can have an input of one task, two tasks, or three

tasks, etc. In that case one must identify which of the

possible occurrences, determined by the associate, has

occurred. To this purpose we must identify another

variable, designated an endocontrol, which identifies

which of the possible occurrences is occurring at a parti-

cular port; for example, "the number of tasks being

transferred through the port," would be an interpretation

of an endocontrol. The exogenous events of an element

at a port will also be functions of this endocontrol of the

•

-39-

associate at that port. When this device is needed,

every autogenous and exogenous event must define the

endocontrols at the ports at the same time it defines

the transi tions,

Connections other than "simple" connections serve

as a device to alter the identification of the endocondi-

tions of associates to the variables which events depend

upon. For example, if a server is connected to two other

elements through a "priority branch" connection at its

output, then as far as the server is concerned the asso-

ciates can "accept an input" as long as either one (or

both) of them can accept an input, because if the high

priority path cannot accept an input, the low priority

path is polled. Similarly, the non-"simple" connections

alter the identification of the endocontrols. The number

of tasks transferred into an input port which is connected

to a low priority path of a priority branch connection is

the number provided by the supplying associate, less the

number transferred into the high priority associate.

The above discussion implies that the states and events

of the network can, through the suitable introduction

of interface variables (endoconditions and endocontrols),

be broken up into pieces, each of which is completely

described as a property of an individual element without

consideration of that element's context in the full

network. Every network event describes the result of a

40-

chain of element events originating from a single auto-

genous event in one element and propagating to its

associates through the effect of exogenous events at

the joined ports. The exogenous events in turn involve

the associates of the associates the same way, until

finally the entire influence of the autogenous event

has been traced out.

That states and events of the network can be broken

up in this way will, in the last analysis, be demon-

strated only by the consistency and interpretabi1ity

of detailed algebraic systems defined for specific

classes of networks using this notion.

7. EQUIVALENCE AND CONSOLIDATION

The interpretation used above represents a view-

point which is the basis for more precise definitions

of the entities described by queueing networks and their

components. Much remains to be done in formalizing it,

and developing theorems about and classifications

of such networks. However, it is not necessary to have

a complete, general theory before useful algebraic

definitions, especially for specialized subclasses of

networks, can be devised and translators developed.

Nevertheless, to be useful these specialized definitions

must have properties which are consistent with concepts

intuitively underlying all network theory.

One of these concepts is the concept, of equivalence

of subnetworks and networks. Out of this concept will

come, almost incidentally, a basic scheme for trans-

forming the network diagram to the matrix structure,

and providing an answer for the third of our basic

questions. The basic notion of equivalence says that it

should be possible to take any repeatable fragment of

a network diagram and call it: a new type of network

element. For example, any of the objects in the boxes

in Figure 7.1 should be suitable elements, with the ports

shown, if the primitive components are. Of course, the

graphics would not necessarily be those shown, and would

probably be much more abbreviated.

-41-

«fMi»**

42

^ U

Figure 7.1

Some Nonprimitive Elements

The network resulting from replacing these ^ ents

or "subnetworks" by elements of newly defined e'ement-

type should then be equivalent in the sense that the

same state set S and event set H should describe it.

Thus, Figure 7.2 shows a network which is equivalent

to that of Figure 2.1, but uses one of the new elements

^©-Q

Figure 7.2

An Equivalent Network

of Figure 7.1.

As a consequence of this view, there must be an

operator which maps connected sets of eiementr. into

"equivalent" elements by "absorbing" the connection which

joins them. We have named this the operation of consolidat i on

4 3-

Any definition of element types must be sucli that

this operation can he defined for all syntactically

al'owed combinations of connections and elements

and the result should also be an element. Thus, in an

abstract sense, the element types must have such a form

that the set of a 11 possible element-types is closed

ui. ler the operation of consolidation. This is an im-

portant property of the algebraic models, and offers

a considerable variety of the element types.

A consequence of this property is that the network

i t i e1f must have an equivalent element: one which contains

no ports. Indeed, such an element must constitute a

canonical form for a class of equivalent networks

derived by various applications of the consolidation

operator to the original network. That canonical form

may be found by repeated application of the operator

until no connections remain.

This procedure describes a potential procedure for

the translation of the network diagram to the matrix

structure. The consolidation operator is repeatedly

applied until only one element remains. This element

e* has no ports, hence no exogenous events and endo-

or cxo-conditions. It will have only a state set S*

and an autogenous event set H* . With suitable

definitions, these two quantities should be readily

identifiable with, if not identical to, the state set S

and event set 5 of the network.

8. A MODliL FOR THE SYMBOL SEMANTICS

The network technology discussed above was intended

to provide a framework in which to develop models for the

element-types and connect ion-types. These models would

represent an answer to the fourth and last question,

explicitly describing the information implicitly pro-

vided by the user. They would also be of such a form that

the consolidation operator was well-defined, or that the

translation process could be otherwise described as an

algebraic operation upon a kno^n set of operands, analo-

gous to the form <i..y.> of branch-types in electric
j J

networks.

Only one such model will be described here. This

model will be a relatively simple one specifically

designed to represent networks containing (at least)

queues, simple servers, infinite sources, and exits,

with connections including simple, random branch, and

priority branches. Of course, in view of the equivalence

properties posed in the previous section, many other ele-

ment-types will also be represent ab 1e either because

they are equivalent to a network fragment containing

only the above primitive components, or because of

inherent (albeit accidentical) extra generality built into

the model. The use of limited models of this type is

analogous to the limitations (linear, finite, no-voltage-

-44

-45-

source, etc.) which are usually placed on electric

network models. The justification is solely one of

compromise between simplicity and utility.

An element-type T., iel , has a value which is a

triple consisting of a state set S. , an autogenous

event set 5. , and an exogenous event function Z.
i e i

T. = <S. ,5. , Z. > , iel..
i ill' 1

(8.1)

Each of these will now be defined in greater detail.

The state set S. of an element e. is a finite set
i i

of nonnegative integer n-tuples, where the dimension

of the n-tuples is characteristic of the element-type.

For each of the four primitives it is one-dimensional.

By definition, an autogenous event £, of an element

e. having state set S. is taken to be a triple

h s <1
V*JI'V (8.2)

■

where

b. is a subset of S.
i i

g. is a constant n-tuple, such that for each

X€lV x * g£ is in Si

Mj is a positive real number

I is an index in an index set L..
i

46-

Here b is called the autocondition set of the event

£. , and represents a set of states for which the event

is possible; the constant y. is called the rate

of the event, and represents the probability intensity

of its occurrences; the constant n-tuple g. is called

the increment, and represents the change in state which

results from the occurrence of the event. (Notice that

the change in state has been here specialized to being

dependent only on state, not on exoconditions, and being

a constant increment.)

To illustrate, consider the "service completion"

event £ for a server having a mean service rate
al

(parameter) y . The event can occur only in the busy

state, state 1 , and when in that state it occurs

with probability intensity y . The event causes a change

from state 1 to the holding state, state 2 , so that the

change is unity. Thus,

£ = <{!}, 1,Y>.
al

(8.3)

The autogenous event set

autogenous events

consists of a set of

. - U^UL.}. (8.4)

-

■

47-

By dtfinition an exogenous event C at a port p

of an element e. having a state set S. is taken also
i 6 i

tobe a triple

C = <b ,g ,7T > (8.5)

where

b is a subset of S.
m i

g is a constant n-tuple such that for each

xeb , x + g is in S.

TT is a probability

m is an index in some index set.

Here b is the endocondition set, and represents the
m ' r

set of states for which the endocondition is nonzero (e.g.,

if the port p is an input port, b is the set of states

for which a- input of a task can be accepted); the

probability ^ is the probability, given that the

stimulus (e.g., an input of a task) has occurred and that

the element is in a state of b , that the change in
m

state produced is equal to g , the increment of the event

An example of an exogenous event is the "input

of a task" event (call it C !/ at the input port p
a2

of a queue whose maximum length is N . An input can

be allowed only when the state is less than N , and it

results, with certainty, in an increase of the state by

unity. Thus

48-

C = <{0>1,....N-1},1,1> (8.6)

for N>1 .

For every port p of an element e. there is an

exogenous event set Z.(p) , representing all the possible

responses to the external stimulus at the port p .

The function Z. has been called the exogenous event

function, and it is a function on P. to a set of triples

like Eq. 8.5. The set Z.(p) is a set of exogenous

events whose probabilities add up to zero or one for

each state of the element. Let

Zi(P) = {?m
:meMi(P)}' a11 peP^ielj. (8.7)

where the index sets M.(p) are disjoint for all p

and i . Then

I
m
xeb

IT = 0 or 1
m

(8.8)

m

for each xeS. . Those states for which this sum is zero

are states for which the external stimulus cannot occur,

such as, for example, the states where an input task

cannot be accepted.

Table 8.1 verifies that each of the primitive

element types can be represented by this model. A

verification that the set of types so-defined is closed

under the operation of consolidation is not easily shown.

-49-

00

4)

H

C
0)
>

ULI

-o
c

0)

*J
c
0)
E

UJ

u
•H
t/l
«I

oa

O

e
B
3

71

o
• (-*

c c
3 <U
u, >

UJ

c i/l
a 3
> O

Ol e
u

w i0
3 o
O >< c. -u
a>
w
,o
X *J

UJ M
o
a.

■y)

3
O
c
a> w
00 4->|
o c
«J u
3 >
< UJ

4-)
(1)

co

a)
*J
rt
♦J

LO

tl
o
+J
<u
E 0)
n) 3
K. -H

n) e0
a. >

♦J

c
v
6 4,

O o o o
A| II A| II
z z z z

(H M u ^1

o o o o
<4-l <+H <4-l tH

•■ 0) *. IU
^-t c (N c

AS o •\ o
o z z
V V

-H rsi
a. a

- (N
-< I

O (Nl

V V

o
V

IU

c
o
z

UJ H

91
3
IU
3
cy

a

A

O

V

IN

0)
c
o
z

<u
c
o
z

>- IU
c
o
z

a;
c
o
z

u
4)
>
4)

■J-,
X

UJ

IU
u
u
3
O

LO

-50-

and will be accepted here without proof. Moreover, the

operation of consolidation will not be defined although

it, in fact^ constitutes a definition of the connection

types. The reader is referred to ref.[3j for a more

complete discussion of consolidation. It will merely be

noted that, if every connection has been eliminated from

the network by the process of consolidation, as proposed

in Section 7, the result will be a network consisting of

a single element whose port set is empty, hence whose

exogenous event function is a function whose domain is

empty. Thus the type information merely describes a set

of states and a set of autogenous events, the latter

being, in fact, the events required in the matrix model

of Section 5.

9. CONCLUSIONS

The models required to produce a system for conversa-

tional design of a class of stochastic service systems have

been described, along with much of the framework of

attitudes and viewpoints which are necessary. This rep-

resents a start, and was intended to show the nature of

the work involved in the creation of such a system. It

also represents a good example of the problems likely

to be encountered in virtually any network-oriented

(i.e., symbolic, graphical) conversational programming

system, and the philosophies necessary to their solution.

We have shown how the characteristics of an algebraic

network model for Markovian queueing systems are related

to the needs of a programming system for conversational

design of stochastic service systems. This model represents

the beginnings of a mathematical system upon which a use-

ful theory can be built. It also outlines, abstractly,

the data structures and procedures of useful programming

systems, one example of which is described in (3).

Within this framework, major portions of a specialized

model for simple queueing networks have been described

(Section 8). This model can be used to describe and translate

a wide array of useful queueing networks, and to permit them to

be numerically solved. Nevertheless, it represents only

51

52-

one such model which car be constructed within the

framework developed. There are many meaningful elements

which were not representable in the simple model, but which

can be described in terms of functional relationships

among the conditions, controls, and events. An example

of an element which cannot be represented in the model

of Section 8 is bulk server, which completes tasks in

groups of varying size. Models which permit such an

element, and others, to be represented must be developed

separately as experience with the present model is gained.

RHFtRtNCtS

Co ffman, E. G. , Stochastic M o d e 1 s o f Multiple and
Timeshared Computer Operat ions, Report No. 66-3 8,
Department of Engineering, U.C.L.A., June 1966.

Fife, D. W., "An Optimization Model for Timesharing,"
Proc. API PS Spring Joint Computer Conference, Vol. 28,
1966, pp. 97-104

Pinkerton, T. B., Program Behavior and Control in
Virtual Storage Compute r Systems, Technical Report 4,
Concomp Project, Computing Center, University of Michigan
April 1968, 160 pp.

Scherr, A. L., A_n Ana lysis of Times IT ared Computer
Systems, Project MAC-TR-18, Massachusetts Institute of
Technology, Cambridge, June 1965.

Smith, J. L., "Multiprogramming Under a Page-on-Demand
Strategy," Communications of the ACM, VJI. 10, No. 10,
October 1967, pp. 636-646.

Sutherland, W. R. , The On-line Graphi cal Spcci ficat ion of
Computer Procedures , Ph.D. Dissertation, Department of
Electrical Engineering, Massachusetts Institute of Tech-
nology, Cambridge, 1966.

Wallace, V. L., and Rosenberg, R. S., RQA-1, The Re-
curs i ve Queue Analy zer, Technical Report 2, Systems
Engineering Laboratory, Department of Electrical
Engineering, University of Michigan, Ann Arbor,
February 1966, 90 pp.

Wallace, V. L., and Rosenberg. R. S,, "Markovian Models
and Numerical Analysis of Computer System Behavior,"
Proc. AFIPS Spri ng Joint Computer Conference, Vol. 23,
19 66, pp. 141-148. "

-53-

llnclu-ssi fiod
SiTiinly CUCMficmon

UMENT CONTROL DATA R&D
Srt ufift t tmttitirmtion ol llthh 6odt ot mbtimct mnd indimng mnnotmtion muni 6» tnff»d Whin tM ovimll fpotf I» tl»9»iUmd}

THE UNIVERSITY OF MICHIGAN
CONCOMP PRO.IhCT

4m. »irom i icConiTv c L * til FiC * TION

Unclassified
Ik. amouf

1 Ml »'Ol. » I 1 T I. •

Network Models for t he Caversat ional Design of Stochastic Service System

i<r-raiP'ivr NOTO r TVp« •' trpatl and Inclutl»* dtitt)

Technical Report 13
• Au t »«nn<ti r FfrM nam*. mitidl* iniiiml. ImHnmmti

Victor L. Wallace, and Keki B. Irani

November ID 68
'• TOTAL NO 0> P«l.I»

53
r* NO or Mirt

9

DA-49-083 OSA 30SÜ
»i •'■OjtC ' WO

ta. omaiNATOH'i acoKT NuMaimti

Technical Report 13

tt. OTMtn «rpoxt HOitl (Any olhtt numb»t» mmt mm? b» »flfntd
Ihlt report)

D'* '•■ »U ▼'ON «TATrMtNT

Qualified requestors may obtain copies of this report from DDC

»• %uF»»»to » M» •* ' ** T NOTC* 11 i»ON»OXlN0 MILI T»HV »CTlVlTi

Advanced Research Projects Agency

UPA •U k '

Numerical ana
communication of p
truly conversation
large-scale system
converts the picto
data st ructurcs re
requires the devel
and for the meanin
are explored, and
programming system

These models,
mation conveyed di
the symbology of t
calculations are p
information from t
calculation.

lysis of Markovian queueing networks, and graphical
roblem statements and results, offer a potential for
al use of computers for "high-traffic" design of
s. However, one must develop a translator which
rial language of queueing network diagrams to the
quired for efficient numerical analysis. This
opment of new mathematical models for networks,
g of :heir components. Such mathematical models
their role in the development of adequate
s is described.

algebraic in form, provide a vehicle for the infor-
rectly by the diagram, the information implicit in
he diagram, the information upon which the actual
erformed, and the procedure which transforms the
he form of the diagram to the form for

54

DD/r.1473 Unclass i fied
Snunu C UsMlicitu'n

f, i

Unclassified
IteurTlv ria<itifi< at on

KEY «onot
NOLI

Computer Graphics
Graphic Languages
Problem-Oriented Systems
Computer-Aided Design,
Numerical Queueing Theory
Queueing Networks
Markovia.i Network»
Network Models
Large-Scale Systems

55-
""cUssifipH

Security Classification

